—

AD-AO42 126

UNCLASSIFIED

TRW DEFENSE AND SPACE SYSTEMS GROUP REDONDO BEACH CALIF
THE SOFTWARE DESIGN AND VERIFICATION SYSTEM (SDVS).(U)

— \.\d_

F/6 9/2

MAY 77 M E HOLLOWICH ¢+ M @ MCCLIMENS F33615=-Tu=C=1159

AFAL=TR=T76=200

£ [1 T 0

Ly

L]
Y
.
L

m “U.-—"""""'—\

BDC FILE COPY

126

O

ADAOA4

AFAL-TR-76-200

SOFTWARE DESIGN AND VERIFICATION SYSTEM (SDVS)

MAY 1977

TECHNICAL REPORT AFAL-TR-76-200
FINAL REPORT FOR PERIOD JUNE 1974 - JUNE 1976

Approved for public release; distribution unlimited

Prepared For
AIR FORCE AVIONICS LABORATORY

AIR FORCE WRIGHT AERONAUTICAL LABORATORIES
AIR FORCE SYSTEMS COMMAND

WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose
other than in connection with a definitely related Government procurement operation,
the United States Government thereby incurs no responsibility nor any obligation
whatsoever; and the fact that the government may have formulated, furnished, or in
any way supplied the said drawings, specifications, or other data, is not to be
regarded by implication or otherwise as in any manner licensing the holder or any
other person or corporation, or conveying any rights or permission to manufacture,
use, or sell any patented invention that may in any way be related thereto.

This technical report has been reviewed and is approved for publication.
This report has been reviewed by the Information Office (0OI) and is releasable to

the National Technical Information Service (NTIS). At NTIS, it will be available
to the general public, including foreign nations.

; WILL

Droject Engineer Technical Manager
DAIS Software Group
DAIS ADPO

j FOR THE COMMANDER

gl

EVERETT, Colonel, USAF
Chief, System Avionics Division
AF Avionics Laboratory

Copies of this report should not be returned unless return is required by security
considerations, contractual obligations, or notice on a specific document.

AR FORCE - B JUN

——

UNCLASSIFIED

SECURITY CL\ASS!F!CAYION OF THIS PAGE (Whan Date Entered)

—~
'/ REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1 REPORIUMBER 2 T? GOVY ACCESSION NO.| 3 RECIPIENTY'S CATALOG NUMBER
o / — | .
AFAL~TR-76-200 - i i/
Swbtitie)r Vo | S PP T B P REPORT-4 RERIOD COVERED

The Software Design & Verification System (SDVS) FINAL REPGRT ,
A 17 Jun 74 -—3@ Jun 76,

6 DERFORMING ORG HEPOPT NUMBER

7. AUTHOR(SL B. CONTRACT OR GRANT NUMBER(s)
M. E./Hollowich f i S
j , nAAN
M. G. McClimens / /6 |) F33615-74-C-1159, - /T £
LT AR Al e ———————————
9 PERFORMING ORGANIZAT!ON NAME AND ADDRESS 10 PROGRAM ELEMENT. PROJECT, TASK
AHEA S)MIT NUMBE RS
TRW Defense and Space Systems Group / C /r7) 4
One Space Park [/ ’—v'_,Izdsz Q2/62
Redondo Beach, California =S ;
11 CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT LATE
// | way_ > B
_./IJ 4 PAGES
G PP,
gl ../
T4 MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office) | 15 S, _¢ CLASS. (cf this Pepestic. ..
UNCLASSIFIED

15a DECL ASSIFICATION DOWNGRADING
SCHEDULE

16. DISTRIBUT.ON STATEMENT (of this Report)

Approved for Public Release. Distribution Unlimited

‘7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19 KEY WORDS (Continue on reverse aide if necessary and identify by block number)
goftware tools Simulation
Configuration Control Avionics Software
Structured Programming
Top-Down Design

ZEI ABSTRACT (Continue on reverse aide If necessary ana identify hy block number)
-

The AFAL Digital Avionics Information System (DAIS) will become a test

bed for evaluation of complex avionics systems architecture. The Software
Design and Verification System (SDVS) has been developed as a ‘highly
transportable set of avionic software development and management tools to
support DAIS and other software development centers. SDVS automates and
controls mission software configuration management, simulation, data base
management, and test and evaluation functions. This report presents an

L_explanation of what DAIS is and the role of SDVS in this program. The

DD | 5i"s 1473 €oimion oF 1 NOV 63 15 OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

T A T p—p . T N T R e~ v S —

s

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Enterad)

various SDVS functions available are presented in addition to a description
of the development methodolgy used for the design, development, and
validation of the SDVS. The methodolgy included application of top-down
design, development, and test techniques, in addition to the use of
structured programming concepts.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

T TR B e I

PREFACE

his report was prepared by TRW Defense and Space Systems
roup, Redondo Beach, California, 90278 under contract
F33615-74~-C-1159 with the Air Force Avionics Laboratery,

Digital Avionics Information System (DALS) Software Group

I'his final report summarizes the Software Design and
Verification System (SDVS) which was developed between

lune 1974 and June 1976 by TRW.

Acknowledgement and appreciation is extended to the TRW
Defense and Space Systems Group in Dayton, Ohio who
participated in the SDVS development. In particular,

M. E. Hollowich and M. G. McClimens were the principal
authors of this report. H. M. Hart, J. Boekhout and

R. M. Hart also contributed to the document. Gay Moffitt

and Karen Lacy assisted in the production of the report.

This Technical report replaces, in full, AFAL-TR-75-31,
same title. TR-75-~31 wn the interim technical report and
does not fully reflect the SDVS system as documented in
this final repo

% e
L/

/{({l/()
J. D. EVERETT, Colonel, USAF \!\Hl\
Chief, System Avionics Division S Hvlrwir-- Group
AF Avionics Laboratory Fechnical Manager

¢ //’

i UR AKOFF AESSION for

SDVS Project E n"l((uwf NS visite Section M
DocC Buti Section [
UNANNOUNCTD a

JUSTIFICATICN

BY
DISTRIBUTION/AVA AS ITY £O0ES
wDM __AVAIl

A

o

iii

ity < S

e Ry TR A ——— gy e v e “‘
N QT SRR T T e

SECTION PAGE
| INEXoductIon ~cmm o e e e e e e e e e e e e i e s 1
EEs DRED OhjEC piveal s crem e e e e e e e e e e =
i 2 Overview of the DAIS Integrated Test Bed -———==~-——-———m———eeememo 5
8 DAIS Information Management System ——————————=——————————————o 5
2 DAIS Support Facility ————————————— e 7 1

Iv. Pescription ol the SDVS e e e e e 5
L. SBVS Modes ot @peration —=———c— e 9

a. Modesselectdon o= e e e e e 9

b. PilesGenerationt s~ — o~ 10

(1) File Structure —————=———=——— e e 10

(2) File Conversational Commands ---—————=————————————- 11

(3) Mission Software Files —————————-———m—mmm—emm— 115

(4) Simulation Test Case Files ———————=———m—e—meeee——q 185

(5) Post Run Edit Files ———————-——————m——mee— e 15

c. Set Up and Eun Simglation ————————=—————————aae— e 16

d. Fast Run Bl e e e o e e e 16

e. KOl baeR e s e e e e e e 17

£. Delete Mode —~—————=——=——————m e 17

g. Supervisor Mode ——-----————————mm e i 47 |

2. SDVS User Languages ——————————————m—— e e 18

a. Simulation Control Language (SCL) —===—=—=—=———m———————— 18

(1) SCL Example ====—=————— e e e e 21

b. Data Processing Language (DPL) ——===——=—m———memmmmm e 25

(1) DPL Example —==——————————m——— e e 26

3. SDVS Simulation Facilities ------—-- S AT P rwsek oy 28

- a. SDVS Support Facility ——--—--—-————————cmmmmmme 30
(1) Code Executor Linker/Loaders ——=—=—==—=-——oemmmeeoo—o 30

(2) Snapshot/Rollback —===—==m—m—m o e 30

(3) Data Recording =-==srecccommaccrmsnectnmmmcaan e e e 31

(4) Subsystems Data Formatting =———=——==----ccmmmmmaa—— 31

(5) Simulated Real-Time Clock =====—==m—me oo 32

- . 'y e —

b

" PRECEDING pacg BLANK.

i

NOT FILMED

“nammtianad o s S we oS -y
v
- T——— S —

SECTION

VI.

VII.

TABLE OF CONTENTS

PAGE

b. SHVS SImulAtors me— e e e e e e 32

(1) Interpretive Computer Simulator (ICS) —-—————=————- 33

(2) Statement Level Simulator (SCS) ————=—————mmmvmeeo 33

(3) Data Bus Simulation —————==——mmmmm e 34

Design and Implementation Techniques —-————=———~———cm—m—mmmeeee 35
1. fop—down AppEOach s e e e 35
& Hierarchial Design ———=—===——— e e e 3%/

(1) Program Hierarchy —=————r——————o————— 37

(2) Evaluation of Using Hierarchial Design —-—-—-——=——-~ 40

b. Rehostibility —=—=—==——s—mmrm e e e e e 41

¢l Control and Data Ioterlace ———ssmeme— e 44

d. Software Development Standards --—-—-—--—————————————e—o-o 49

(1) Structured Programming ——=————c—————m———m e 49

(a) SDVS Structured Programming Constructs —--—----- 49

(b) Evaluation of Structured Programming -------- 50

§2) Program ModulaulEyemsm s e te s e e e e e e e 51

(3) Use of a High Level Language ~——————-——————==————= 56

) Erogeamming s tandards === = e e 58

€. Software Testing ~—=~——————— e e s 62

(1) Test Planning -—-—=——=——==—————r———em e e 62

(Z) = Contiguration Controll ~ et e e = 69

24 Program Plan ———=—=———-— = e e 70
a. Overall Philosophy —==————————— e e 70

b. Development Comcept =—=————tmmm s e e e 70

(1) Phase I SDVS ———-m——c—mm—t e e 70

(2) Phase TI SDVS =——mm o e e e e e 72

(3) Phase IT1 SDVS == mmmmm oo o oo 73

3. Productivity Using SDVS Development Techniques --——--===-=-=- 74
Conclusions and Recommendations =—————semcm o c e e e e e 77
List of Acronyms ====—cremccemmm e e e e e e e — e e — e 80
References =-=—=—=—w=we- e e o e e e o e e o i e 81

vi

e e —— o

Y TN o

FIGURE

10
15 5
12
13
14
15
16

17

ILLUSTRATIONS

DAIS Software Organizatiop ——————————————————————
Simplified Block Diagram of ITB Facility --------
SBVSSHiilletSEruc Ew el ————=remm e e e e e
Example of Creating a File in SDVS —-——————=——=—-

Example of Supervisor Mode Operation --—-——-------

Sample SDVS Flight Profile —------—- ===
Sample: SDVS SCLI Program ——=—sc—=—=—c e ——e——une

Sample SDVS DPL Program ------ = =

The SbVssViewko i D AES e = e e s e e e
Hierarchy of SDVS Software ———————--c——coe——co
fccess CP Interface ————rs————=———————=—tou——r
SE R S oM O e = e e e

SDVS/J73 Constrol Structures —----— -

Example of SDVS Module -- === ==

Phase III SDVS Testing Configurations —------——---

SDVS Phase III Configuration Testing —-——-—-------—-

Configuration 4 Standalone SLS and SCP --======--

vii

L T T T I —— G

12

14

19

27

29

38

46

47

51

61

64

65

68

N Ty

NUMBER

TABLES

PAGE
Example of SDVS DEFINE Strings —-=——===—-———==—m——m e 59
SDVS Capabilities by Phase —--—===-=-mmeemmmmm e e e 71
Size /S Programs --—-—-——————-— ——— e 75

,A.._._.. - "‘T"

P L mante
. .

- .

§é Pmscsnnh P gt
AGE -
f'_ Sapvs BLANK-NOT FILizD

‘ PRy

R e T -‘~~:£.-..~. .

ix

SCLCTION 1

[NTRODUCT TOM

The purpose of this renort is to give an overview of the Software
Design and Verification System (SDVS) and present the design and implementation
techniques used to develop SDVS. The SDVS has been developed as an integrated
collection of software tcols in support of the AFAL Digital Avionics Information
System (DAIS) program. DAIS is an information management system anproach

to avieonics processing applications. The overall objectives of DAIS and SDVS
are presented in section two.

Section three describes the DAIS facility being developed at AFAL.
Included is a discussion of the information management system core elements
and the overall system architecture. The DAIS supnort facility which will be
used to evaluate the real-time operation of the DAIS core elements is also
described.

The DAIS mission software will be developed using the SOVS tools discussed
in section four. Each of the seven SDVS modes of operation associated with
the configuration management, simulation and testing of mission software is
presented. The SDVS high level languages for defining simulated DAIS mission
scenarios and processing simulation data are described with illustrative
examples. Section four concludes with a description of the simulation functions
available in SDVS.

Section five presents the techniques and tools employed by TRW in
designing and building the SDVS. The basic design philosophy was based on
a top-down desian, development, and testing approach. Topics concerning
structured proaramming techniques, programming standards, test
planning and configuration control, rehostability of SDVS, definition of
control and data interfaces, etc. are also presented. Secticn five continues
with a discussion of the overall program plan, the development of SDVS in a
three phase effort, and concludes with some quantitative data concerning the
productivity achieved using the various development techniques. Conclusions

and recommendations are outlines in section 6.

— RN '-‘:-:ra R e

- "‘\‘ “'&&e

»f
% PRBCED
;, Il& PAGE BLANK.N()T FILMED

AA..‘:‘*A - A S -

'-——'!m,,m’** R i i e e e w— e e e e e e ——————————: v

&
RE =

e nally

DALIS GBJECTIVES

The purpose of the Digital Avionics Information System (DAIS)
project is to demonstrate a coherent solution to the problem of pro-
liferation and nonstandardization of aircraft avionics, to develop and
test in a "hot bench" configuration (known as the Integrated Test Bed -
ITB) the DAIS concept, and to permit the Air Force to assume the initia-
tive in the snecification of avionics confiqurations for future Air Force

weapon systems acquisitions.

Historically mission information requirements have been established
alona semi-autonomous subsystem areas such as navigation, weapon delivery,
stores management, flight controls, communications, etc. !lithin each of
these functional areas the trend has been toward digital systems each with
its own unique processing, transfer and display of information. There has
been an integration of requirements between functional areas only as
necessary for interaction purposes. The DAIS concept proposes that the
processinag, multiplex and display functions be common and service all the
nreviously described areas or subfunctions on an integrated basis. ‘lhen
counled with other existing programs and facilities, the DAIS "hot bench"
will contain the flexibility to evaluate a spectrum of multiplex, process-
ing and display approaches such that decisions regarding interface standards,
processing architectures, display concepts, etc., can be made. As technoloqy
becomes available and the "hot bench" is programmed to solve desired aircraft
avionic problems, the built-in flexibility will accent adaptation. In this
manner, an evolutionary arowth will continually update the "hot bench" con-
fiquration whenever the capability or need exists.

The DAIS design approach reflects a total system concept which is
functionally oriented rather than hardware oriented. For example, a
“navigation subsystem" in DAIS does not refer to a set of black boxes
which are identifiable functions which are performed various places
throughout the system. Hot that the system is not dedicated exclusively
to doina the navigation function alone; it is also used to perform the
functions of many othar "subsystems". DAIS will certify ideas and classes
of equipment that can satisfy weapon system needs.

L v

i T T e L W R T I I = S——— g

Snecific objectives of the DAIS program include:

a. Develop an AFSC in-house capability to define, demonstrate,
test, and evaluate evolutionary changes and requirements in
digital avionics.

h. Define and design a "hot bench" confiquration for a limited
hardwvare demonstration with growth potential to accommodate
a large class of weapon systems.

Identify and recommend standards, criteria, and specifications
which must be instituted to reduce the proliferation and
complexity of avionics svstems.

O
.

d. Provide means for quantitatively evaluating cost (both
acquisition and life cycle) aspects and for exploiting
notential increases in reliability, maintainability, and
versatility of future weapon systems.

e. Influence the design and development of sensors via input-
outnut format specifications which will allow the new sensors
to be compatible with the DAIS concept and ensure optimal
information transfer and management.

f. Identification of many diverse proagrams, offices, etc., involved

in digital avionics with the resulting integration of their
requirements and actions into one coherent proqram.

The DAIS software hierarchy necessarv to support these goals is depicted
in Fiagure 1. The mission software represents the Operational Flight Prooram
(OFP) for a narticular DAIS simulated mission. The support software includes
all the necessary non real-time software tools to aid in the development,
testing, verification, and maintenance of the mission software. These tools
include confiquration management aids, functional and bit level simulations
of the DAIS "hot bench", and user interface lanquages. They are known collectively
as the Software Desiqn and Verification System (SDVS). In addition to the
SDVS, the DAIS support software includes the Integrated Test Bed (ITB) Support

Software for real-time control and monitorina of the DAIS "hot bench".

uotjeztuebu a4emzjos SIva
| aunbry

JYYMLO0S

(saas) m&ﬁ.ﬁu_om\4
SNOILYJIddY

IWIL-T¥3 NON |

34y¥ML40S
3A1LNJ3X3

|
|
]

|
|

3YYML40S 140ddNS

JYYMLA0S NOISSIW

e

3YyYML40S WILSAS NOILYWYOINI SIINOIAY TVLISIQ

At 4 s e A e

-~

T

e O o,

WG PN

-

e ond

SECTION II11

OVERVIEW OF THE DAIS INTEGRATED TEST BED

The DAIS "hot bench", or Integrated Test Bed (ITB) is an information
managemnent system consisting of a set of federated processors interfaced
to each other, to avionic sensors, and to control and displays by a
MIL-STD-1553A multiplex data bus; and a support facilitv to perforn the
information managerent system monitor and control functions. Fiaure 3-1 is
a simplified block diagram of the DAIS Inteqrated Test Bed. Control of
information managerent system functions is performed by the DAIS mission
software which is partitioned among the DAIS processors.
The following paraqraphs highlight the functions of the various Inteqgrated

Test Bed components.

1. DAIS Information Management System
The DAIS core elements shown in Fiqure 2 are based on a federated
processor architecture. FEach DAIS processor is connected to a Bus Control
Interface Unit (BCIU) which initiates data transmission over a redundant
multiplex bus system between the processors and rerote terminals (RT). The
latter being the interface between the data bus and the simulated avionic
equipment. Fach BCIU is actually an intelligent I/0 channel which executes
1/0 cormmands stored in the DAIS processor's memory. Centralized single
point data bus protocol is performed by a processor resident software execu-

tive and a selected master BCIU.

The remote terminals provide an interface between the bus and aircraft
equipments. Conceptionally, it functions similar to a BCIU by transferring
data to or from the equiprment to which it interfaces. The RT contains inter-
face modules which can be interchanged to provide the correct electrical
interface for different equipment. t can also be prograrmed to define the
mapping of data between the bus and the aircraft equipments.

The mission software is distributed among the set of processors in the
svstem. It consists of application software, which performs the processing
required for a specific aircraft/mission application, and the executive
software, which performs system control and provides services to the

application software.

A e U e

T T W e ——— Gy W -~ n g e G e ————————

Aarmoe g1l jo weaderq ydolg payrdung z aandry

[

| LUNA |
i 3DVAIINI

L SWILSASENS | |
|ouvVINWIS | | |
— |

|

, :z: “
, I
| :o:zoz Hal'] _ |

—
|

| S —— | |
||
{ ” |
Jlﬂl_llJ- = e A |
H ! —— |]
bl 0t g8 |—td s o] #vossidon | | _ ‘
> | Siva | | | M
- | | f 1 t
e P | AR —— a3New0d |
> | 1 1 | |
. P4 —_— | —) (1059)
> ! ¥3LivweO4 MOONIM
5 z — — = . viva] wma
i/ 5 AT o B Givioms || _—
. Zo¢— NId§ p— £ 205532084 {
S siva | |
. - | \
x —————t (NQVJS }—r | 1I|.J
¢« o — Ll winmes| | L e)
. > {Owd) 108INOD l ¥iiNdwQd
- =) | e | ! | QNV 3OLINOW NOLYINWIS \
r s ¢S r \ | o | N —————r— IDNYNI0 43 ! 150K \ g
! 0$5300%4 e R T
= iy —e— NID§ e A
! siva — | ¥3INID
S | n | I0NOD 1S3
tifayos SINIWNEISNT |
S ——— (an-xova) !
ALY |
| Y|]ll,] _— 3avm 1308
RIS ! ! NOISSIW SIva
r 1 r | _—
i A L 805532004 ‘IllllJ [SOnwYNiIDs Y
155 e sIvQ —— YO¥INDD NOIsS I
l—t 1 |novds L—J IOviediNI C $1100w p
e b 11¢%202 livaduy
| SUCSEN————— e———
§1300w
=" s WIISASNS
JINOIAY
r 1 { 1 r vivQ > |
(Gavy 1 LIOUHL=XDILS) INIDS (20N NOLY S
~QSA-CSH-QNH SIOUINGD IVRARY ¥IINID L f—
SAVS1Q ONY VNNV \ WASIA JOUNCD sAQs
S1ICUNOD Sivd 142000 wis

s —

Siva AL1113Y4 140ddNS

-

e

-

R sy LT,

=

The executive software is further divided into the master executive,
and the local executive. The master executive, which is resnonsible for
systen control, resides in one processor desiqgnated the master processor.
The monitor executive resides in the monitor processor, and it provides
a backup to the master executive. In the event of master processor/mas-
ter BCIU failure, the monitor executive will assume syster control. A
copy of the local executive is located in each processor and provides
real-time services, includina data read and write, task control, etc., to
the annlication software.

The mission software will be implemented in the JOVIAL J73/1 hiaher
order lanquage utilizina structured proaramming techniques, and a modular
architecture approach.

2 DAIS Support Facility

The Support Facility will provide the necessarv interfaces to set
up, provide real-time control and monitoring functions, and collect data

for post run analysis for all DAIS testing activities.

A DEC10 computer will be used to execute real-time aircraft and
environment models, compile (in J73) the DAIS executive and applications
software, generate simulated mission scenarios, perform post run analysis,
and maintain all the above files and simulation data under a confiocuration

manaagement system.

The Performance Monitoring and Control (PMC) computer in Fiqure 3-1
is a PDP 11/49 interfaced with the DEC10 via a OMA window. This machine
will be used to load the mission software from DEC10 storaqe onto the DAIS
processors. Operation of each processor will he monitored by a Suner
Control and Display Unit (SCADU) and a Console Interface Unit (CIU) which
monitor the processor's memory bus and perform such functions as monitoring
snecified memorv addresses, tracina branch instructions, breakpointing based
on events, etc. The PMC computer will interact with the user to set up
SCADU monitoring parameters and can also use canned scenarios stored on the
DEC1N to set un the SCADU. Real time display of systen performance will be
available on a local CRT.

P AT TR TR TII G o B e e e e T

The Simulated Subsystems Data Formatting (SSDF) computer controls
the transfer of data between the simulation models executing on the DEC10
and the DAIS mission software via the multinlex system. It obtains data
from the sinmulation models needed to drive the backup cockpit instruments
and supplies it to the cockpit interface and the Video Control Center
(VCC). The SSDF also provides a mass memory simulation. During real-time
testina, the VCC receives the simulated aircraft's position, altitude, and
attitude data from the simulation models. These parameters are used, alonq
with the necessary display man information, to provide the simulated
external scene displav. Other VCC functions are the digital recording of
the backup cocknit instrurent data and the video recording of DAIS controls

and disnlays data.

e e .

4. Descrintion of the SDVS

Section 3 described the DAIS concept and nresented the hardware
confiquration for the Intearated Test Bed Facility. This section
describes the SDVS which consists of an integrated collection of soft-
viare toonls to aid in the development, coding and testinag of the actual
fliaht software for the DAIS nrocessors. Throuah the SDVS, an applica-
tions oroarammer will have such capabilities as the automated control of
sofiware versions and chanages, an all-diaital sinulation capability for
executina and testina the DAIS Mission Software without use of the actual
hardware, the automatic control of simulation runs and the editinog and
analysis of the test-data qenerated, etc. SDVS will be used by both Air
Force and other contract's personnel to aid in the desian, implementation
and testina of all Mission Software for the DAIS hot-bench. The SDVS
tools essentially automate much of the manual setup and housekeenina
activities nreviously required for software development in an inteqrated

user oriented facility.

The following naraagraphs summarize the basic functions the SDVS
nrovides users. Each of the basic operation modes will be discussed in
addition to the SDVS proaramning lanquaces for defining simulated DAIS

scenarios and for editing and displaying simulation data.

1. SDVS Modes of Operation

Mode Selection

Unon enterina the SDVS, (by performina an "R SDVS") the user is prompte.
for the desired mode of operation. The following scenario illustrates a
user entering SNVS and requesting (via the "HELP" command) a displav of the

modes of oneration.

e m;--m*. T R T T I A S— o

e A—— o i o e

R SDVS
WELCOME TO SDVS VER.3B(N61176), YNDUR NAME
(LOGS NAMES 114370 ASSIGHED TO THIS SDVS RUMN)

SDVS IS READY. UHICH MODE OF OPERATION IS DESIRED?

+++{ELP

PLEASE ENTER MAME OR INITIALS OF ONME OF FOLLOWING:
FILE GENERAT [ON (FG)
SET UP & RUN STMULATION (SURS)
POST RUN EMT (PRE)
ROLLBACK (RB)
DELETE MODE (MANAGER ONLY) (DM)
SUPERVISOR MODE (MANAGER ONLY) (SM)
LOGOFF (LOG)

Based on the user's input, SDVS will enter the selected mode of
operation and perform the desired user actions. \|lhenever the user is
finished in SDVS, he enters the LOGOFF command. The following paraaraphs

describe the seven basic SDHVS modes.

} ... File Generation

The File Generation mode provides the necessary tools and configuration
manajgement aids for maintenance of all files associated witn the develonment,
test, and verification of the DAIS software. An extensive cataloging syste .
is maintained for a number of different types cf software controlled by SuVS
including; DAIS nission software, SDVS test case files (defining simulatior
scer-rios and data collectior requirements), environment and aircraft models,
ird post simulation data reduction and analysis programs. Manipulation of
files cataloged in SOVS is provided for by a number of conversational commands
(e.qg., editing, compiling, printing, etc.) described in section 4.1.2.2.

File Structure

Each file type is cataloged by SDVS on a version/revision basis. For
exanple, when the user creates a mission software file, it is cataloged as

version 1, revision 0 and stored in a "baseline file". As the user edits

the file in Tater sessions, he creates a number of revisions. Fach revision
results in the edited chanqes being cataloged as a unique record in the
"difference file" for the particular file version. At any point in time,

he can combine all the revisions associated with a particular version and

10

!
l
: . "M—’"""‘ at oo 'm.‘"'r WY Ny e "r..‘ﬂm,-vr'r"'ﬂr' i e o e e R e G A e

make a new version with the conversational NEXT-VERSION command. Under
SDVS the user can access any version and revision number for a file since
each EDIT session generates a unique entry in the difference file for a

particular file version. Fiqure 4-1 illustrates this capability.

(2) File Conversational Commands

SDVS provides the user a number of commands to perform various
actions on SDVS files. The following commands illustrate some of the

functions provided for:

HELP - List the format of all SDVS user commands

ACCESS - Make available a specific file, versior, revision
for processing

EDIT - Perform text editing on a file

COMPILE - Compile a J73 program

COPY - Copy a file onto another file name

HEXT-VERSION - Generate a new version from all the revisions of
the version specified

PRINT - Print a file on the system hard copy device

CREATE - Create a new file

ENTER - Enter a file from the host computer into the SDVS
catalogs

OQuUTPUT - OQutput a file from SDVS to the host computer

In interpreting the above commands, SDVS will interrogate the Con-
fiquration Management cataloas to determine if the user has authority to
access the desired file {file security is specified in the Supervisor
Mode, section 4.1.7). If he does not, he is output an error message and
asked what else he wants to do; otherwise the requested operation is

performed.

For example, if the user desires to compile version 5, revision 2
of the file, NAVIGATION, he would enter the following:

COMPILE NAVIGATION/S5/2/MSW

where MSU indicates a mission software file type requiring the JOVIAL
compiler. SDVS will assemble a single text file from the difference

1

W, PR A . T T e B e

34n3on43s 3| L4 SAQGS € aunbL4

JWYN3TIS

NOIS¥3A \
NOISIAIM — / v
9/2/AVN 40 11A
NOIS¥IA LX3IN B/ L/AVN
\ T NOISIAY \rmo NOIS¥IA IX3N
Lot
| 3
F 7 NOIsIAR | |
o 4
| € NOISIAY AP zo;Sﬂ
T NOISIA Z NOISIAY Z NOISIA
Tentmndower |8 B onire s B vty _ ENE
| L NOISIAY L NOISIAY L NOISIAZ | 3DN 33410
TR gl
0 NOISIA Y 0 NOISIA 0 NOISIAT iy
£ NOIS¥IA (€ | ZNOISYIA (& | | zo_m$>__ INITISVE

AVN=-3IWVYN3T14

e

L W TN I T T R—— A A A

-~

-

=

st

o,

B e e o e SRR I e S R Qi P e e e e s

file and baseline file stored in the cataloas (see Fiqure 3) and call
the system JOVIAL compiler. Upon comnletion of the compilation, the
compiler will return control to SDVS which will now automatically 1link
the translated code to version 5 revision 2 of file HNAVIGATION. Note,
that the user does not have to keep track of source file names, object
file names, etc.; these functions are handled automatically by the SDVS.
The following naragraphs discuss the three basic file types maintained
bv the SDVS; mission software, simulation test case, and post run edit

files.

(3) Mission Software Files

The SDVS catalogs provide confiquration control for the developrment,
test, and maintenance of the DAIS mission software. The user will have tnhe
capability to create and edit JOVIAL code and COMPOOL data files. SDVS
will automatically Tink COMPOOL data files to program files in the catalogs.

The user will be able to produce listinas, save newly created and
updated files, and invoke the JOVIAL J73 compiler or the DAIS processor
assembler. The SDVS will automatically catalog all revisions made to a
mission software file, and catalog object modules from successful compila-
tions.

Figure 4 is an example of an interactive SDVS session used to
create a mission software file (MSW-POT-DRIVER-1) that is to be linked
with a COMPOOL file. A1l user inputs are outlined.

(4) Simulation Test Case Files

The File Generation mode of SDVS operation also provides the user
the capability to create, modify, and translate source test case files
containing Simulation Control Lanquage statements. These source test
case files provide the directives which define the initialization and
control of a simulation run including sequences of operations, failure
conditions, outputs to the rough output tape for post processing in the
Post Run Edit Mode, etc.

The user inputs to build test case files are of two types, Conversa-
tional Lanquage and Simulation Control Lanquaae. The user will enter Con-
versational Lanquaae commands to enter the appropriate file handling mode
of operation, i.e., create, edit, print, copy, etc. The test case files,

13

SOVS 1S READY. WHICH MODE OF OPERATION.IS DESIRED?
114 FG

You AR! NOW ENTERING FILE GENERATION 1ODE OF OPERATION

WHAT ACTION DO YOU WANT TO PERFORM?

ENTER “"HELP™ TO LIST THE AVATLABLE COMMANDS

ENTER "HELP _COMMAND NAME" 10 GET THE SYNTAX OF A GIVEN COMMAND.
14 4CREATE MSH-PQT-DRIVER-1]

FILE YPEAGH]

SECURITY LEVFLZ2]

LIST COMPOOL FILES, ONE AT A TIME, USING THE FOLLONING FORMAT
FILEHAME/VERSTON/REVISTON

TERMINATE THE- LIST WITH A "#".

P44 MSH-CHP-01/4/1)

114 §J

(Note: COMPOOL files must already exist and be compiled)
LIST COPY FILES, ONE AT A TIME, USING THE }OLLOWING FORMAT
FILENAME/VERSTON/REVISION

TERMINATE THE LIST WITH A "#".

114#](no COPY files)

(Note: COPY files must already exist, to be specified)

A% ENTERING TECO CREATE SESSION -- START WITH'I':

1 1COMPOOL 'MSW-CMP-01' (CMPSRT) 3]

PROC DRIVER;

BEGIN
NUM = 4;
TIMES [1] = 4;
ITMES [2) = 49;
TIMES (3] = 19;
TIMES [4) = 14;
SORTPG;
TIMES 1) = 49;
1IMES[2] = 17;
TIMES (3] = 11;
[IMES (4] = 193
SORIPG;

END; -

*#% RETURNING FROM EDIT SESSION OR J73

VERSION 1 OF THIS FILE HAS BEEN CREATED AND LOCKED T0 THIS USER.
WHAT ACTION DO YOU WANT 10 PERFORM?
v+ OGOFF)

Figure 4 Example of Creating a File in SDVS

SRR S e e

2 s g ——

L I o e

-

themselves, will contain statements in the Simulation Control Lanquage
which are, at user request, translated to an internal form for later use

in directina a Simulation run.

The primary output of building test case files are the internal test
case files which will be used to control the initialization and execution
of simulation runs. In addition, the user will obtain interactive outputs

during file manipulation, such as successful completion and error messaqges.

The test case directives file will reference mission suftware files
that are to be used in the simulation. It will provide directives to
agenerate the rough output tape which will be analvzed after the sinulation
run is complete. The test case directives source and internal files are
maintained in the SDVYS file cataloas. Section 4 No. (1) nresents an example

of a Simulation Control Lanquaae proqranm.

(5) Post Run Edit Files

The File Generation mode of SDVS operation also provides the user the
capability to create, modify and translate source Post Run Edit directives
files to internal form. These PRE directives files contain the Data Pro-
cessing Lanquaqge commands which define the processina to be done on a
rough output tape in the SDVYS Post Run Editor mode of operation.

The user inputs are of two types, Conversational Language and Data
Processina Lanquage. The user will enter Conversational Lanquaqge Commands
to select the desired file handling mode of operation, i.e., create, edit,
print, copy, etc. The PRE directives files, will contain statements in
the Data Processing Lanquaqge, which at user request, are translated to an
internal form for input to the Post Run Editor. A sample PRE program is
presented in section 4 No. (1).

The primary output of this mode of operation are the internal PRE
directives files which are used in the Post Run Editor SDVS mode to perform
data editing functions on a particular rouah output tape generatcd by a
similation run. In addition, the user will obtain interactive outputs,
such as successful completion and error messaqges, during the file manipula-
tion and translation process. The PRL directives files, source and internal
are cataloged by SDVS. A PRE directives file may be specified by the user
in a test case file to be automatically run at the end of a simulation run.

15

s SRR i S e i e T o > £ < ool » : L TR

'W‘W-‘f’- - T M“,: ST T

c. Set Up and Run Simulation

This mode of operation is used to submit a simulation run based
on a test case directives file that has previously been created and

translated. The user inputs for this mode of operation include:

o Specification of the test case file
o Maximum simulation time

o Time of day for executing the simulation
SDVS will automatically:
0 Retrieve the test case file and load the specified

mission software for simulation

o Interact with the machine operator to mount the
necessary tapes

o Perform initialization commands specified in the
user's test case

o [xecute the desired simulation scenario

o If specified in the test case, automatically transfer
control to the Post Run Edit mode and perform post run
data analysis and editing on the simulation data.
The software tools used for simulation of a DAIS mission are described

in section 3-
d. Post Run Edit

The Post Run Edit mode provides the user with the ability to analyze
the data recorded on a Rough Output Tape during a simulation run. The Post
Run Editor will access the user-specified translated Post Run Edit directives
file. The directives will specify what data is to be selected from the ROT,
what analysis is to be run on that data, what format is to be used to display
the analysis results, what user routines are to be used, and what devices
are to receive the output files created hy the Post Run Editor.

The Post Run Editor provides tabular printouts, interactive displays
and data plots based on user directives. An important feature is the ability
for a user to write an analysis routine in JOVIAL and have it execute within
the framework of the Post Run Editor.

16

I T R Y S e S ———— gy v -—— —

e A T W g R

e. R()th(jﬁk

The rollback function will provide the user the capability to

L

restart and rerun an SDVS simulatic~ “vom a point during a previous

simulation run as stored on a sn ipe. The user may chanae the
test case to obtain additional ou . =~ alter existing conditions,
following the point saved on the snanshot tape. The user will do this

by qgenerating a Rollback test case file which will be nerged with the

one used for the earlier simulation by SDVS.

The user will input a specification of the Rollback test case file

to be used and the oriaginal Test Case file.

The outnuts of this mode of operation will be a simulation run which
(if no chanaes were made in the test case file) will exactly match the
previous one. Chanages may be made to provide further analysis of a sinula-

tion run which is of special interact.

f. Delete Mode

This mode of operation is only available to the SDVS manager and provice:

him the capability to delete files from the various SDVS cataloas. This
function was made a manager level function to allow manager level control

over the disposition of all files.

g. Supervisor Mode

This mode, 1ike the Delete mode, is available only to the SDVS
manaaer for confiquration control purposes. One of the features of the
SDVS file management scheme is that before a user may generate any file in
File Generation moce, specifications must have been created for that file,
including the provision of a list of users who are authorized to write
(e.a., create new versions) on the file and, if appropriate ,a list of users
who are free only to read it. The creation of file specifications must be
performed from Supervisor mode. This mode can be entered only by a SDVS

user logaged in on the special Manaager programmer number,

> i o R > » - 3 —— A @,y - - S— - R S

In Sunervisor mode, statements in the Conversational Lanquage will

be entered. One of these statements will allow the manager to create
specifications for a particuliar file, and enter the initial list of users
who have authority to read and/or write that file. Another statement
allows the manager to chanae the authority of a user from read only to
read/virite or vice versa, or add new users to the list of authorized users,
or remove users from the list. Both of these commands may be completely
snecified by the user or he may elect to be partially or entirely prompted

for the necessary information.

There is only one type of output to the authorized user from Super-
visor mode. This output consists of information relayed to the user about
the result of processina his request. This miaht be a description of any
syntax error which has heen detected by SDVS or an indication that an error
occurred while the request was being processed, or a message indicating
that the request was satisfied. The specification files and the 1lists of
authorized users are inaccessible to any SDVS user whether in Supervisor

mode or not. Fiaure 4-3 jllustrates the use of this mode.

2. SDVS User lanauaaes

In the File Generation SDVS mode, the user can create simulation
test case and post run edit files. These files are user programs written
in the SDVS Simulation Control Lanquage (SCL) and Data Processina Language
(DPL). The Simulation Control Lanquage provides the mechanism for the
user to control a simulation by specifying initial conditions, scheduling
events to occur based on time or conditions, and specifying output to be

aenerated. The Data Processing Lanquage is used to specify the output data

and format desired (hardcopy printout, terminal display or Plot).

a. Simulaticn Control Lanquage

The SDVS Simulation Control Language is a programming language used
to specify simulated DAIS missions. The language syntax is patterned after
the JOVIAL lanauaqe and can be cateaorized into (1) non-executable statements,

(oY

-

]

bl bk b [y =

. 4

i/ s &

SpvS 1S READY. WiHdICH 1H0DE O] [RATION 1S DESIRED?
14 iL._L_J_PJ_R\'[‘,()S{j
YOU ARE NOW ENTLRING SUPLRVISOR MODE OF 0Pt RATION
LHAT ACTION DO YOU VANT 10 PEREORNM?
N T (e
FILERAREA2R0C- 33A
FILE TYPEASW] . .
SKIP TECO (CR=YES)?
{NTER LINES OF THE FOLLOWING FORMAT, ONE AT A TIME:
ADD PROJECT-HUMBER, PROGRAMVER NUMBER, ACCESS-CODE
WA RE ACCESS-CODE 2AY BE:
R (READ-ONLY ACCESS) OR
W (READ/HMRITE ACCESS)
TERGINATE THE LIST WITH A F.

*[A0D_3207, y_zuﬂ
*[ADD _3202,653,R

*| 40D _3202,1111,R

S F] .

WAAT AC T1I0N DO _YOU MANT | 0 PfRi GRIM?

44 :CHANGE AUTHORI TY FOR PROC -338/145K]
INTFR LINES OF THE fOLTONWING FORMAT, ONE AT A TIIE:
ADD PROJECT -NUIBER, PROCRAIAER-NUMBER, ACCESS-CODE
REVAOVE PROJECT-4UWM3ER, PROGRANMMER-NHUMBER
CHENGE PROJECT -NUMBER, PROGRGIGIER NUIMBER, NEW-ACCESS-CODE
JHERE ACCESS-CODE MAY BE:
R (READ-0ilLY ACCESS) OR
W (RFAD/MRITE ACCESS)
TERAINATE THE L1IST WITH A 4.
* [REIOVE_3202,11117]
3202.1111 HAS BEEN REMOVED FROM THE L1ST OF AUTHORIZED USERS.
* [CHAIGE]
PROJECT HUSBER? |3202]
PROGRAIER NUXBER?]653]

NEW ACCESS CODE?[W]

3202, 653 HAS HAD HIS AUTHORITY CHANGED TO W.
*ADD]

PROJECT NUMBER? [3202]

PROGRAMMER NUMBER? [457]

ACCESS CODE?{R]

ﬁcgrss RECORD STORED.

1

WHAT ACTION DO YOU WANT TO PERIORM?
144 0GOF F]

DO YOU WANT YOUR LOG HILE PRINTED? [RO]
x3% SOVS TERMINATION ***

Figure 5 Example of Supervisor mode operation

19

-

’) sequential statements, and (3) asynchronous statements. The non-
executable statements are used to convey control information to the

simulation system such as

0 the mission software to be simulated

o the flight profile tape to be used

o the Post Run Edit program to be executed after the simulation
0o the variables to be traced

0 the type of computer simulation (ICS or SLS)

o the type of rollback (and time)

Certain sequentially executed statements provide many of the capabilities
of conventional programming lanquages such as FORTRAM, PL-1, and JOVIAL.
Other sequential statements direct the Simulation Control Program to per-
form a simulation-related function. These statements are used to:

0 assian values to variables
o transfer control to other statements

o evaluate a loqical expression and execute one of two state-
ments depending on the value of the expression

activate simulated computers

0
0o collect data

o turn traces on and off
0

terminate the simulation

Asynchronous statements are not executed sequentially; they are executed
asynchronously as the result of a user-specified condition becoming true.
In a sense, the true state of the condition behaves as a software interrupt
which triagers the execution of the statement. There are three types of
conditional statements providing different types of asynchronous control:

o The WHEN statement contains a condition and a sub-statement.
The first time the condition becomes true, the sub-statement
is executed. An Enalish lanquage analoqy is "When Harry gets
home ask him to go to the grocery store". The first time
Harry gets home he is asked to qo to the store; he is not
asked every time he qets home.

20

i Pt Tifioiadiady A L T Sy e R T A e —

A — A e S

o The WHENEVER statement also contains a condition and a sub-
statement. Evervtime the condition becomes true, the sub-
statement is executed. An analoqgy is "'lhenever the car runs
Tow on gas, fill it up". The car gets filled up evervtime it

runs low on aas.

o The YWHILE statement contains a condition, a repetition
frequency and the name of an SCL nrocedure. Until the
condition becomes false the SCL procedure is performed
repeatedly at that specified rate. The old saving "Keen
doing it until you get it right" might be implemented using
a WHILE statement.

(1) sCL Example

To illustrate use of the SCL in testina mission software, consider the
develonment of a new navigation algorithm, NAV, that has been created and
_compiled in the SDVS mission software file catalogs. The user is interested
in generatina a fliaht profile such that the SDVS avionic and sensor models
; will aenerate realistic navigation sensor data for input to the NAV routine.

Fiaqure 6 is a pictorial representation of the following fliaght

scenario:

0 Takeoff is atlatitude 35, longitude 117° with a thrust cormmand
of 12000 pounds.

o \lhen the X velocity » 170 fps, pitch the aircraft at 20/second.
o \llhen the nitch angle > 200, maintain that pitch.

0o "“When altitude exceeds 10000 feet, level the aircraft by setting

a neaative pitch rate.

o !lhen the pitch anqle is less than zero, terminate the simula-
tion.

Usina the SDVS SCL, the user builds a test case file to specify:
o The flight nrofile.
o Data to be recorded for post processina.

0o Sensor data to be used by the NAV routine.

l : 21
;’_ W“W’m'{twi?wwm' iy e R TR AR S QPR - MRS P e s

311408d LHOI4 SAQS 31dW¥S g 34nbid .

00021 = 1sSnuiiL

UUm\ON + = 3304 YO33d }
&= sS4y 0T <A (T
O : §
¥ ﬁ :
V uom\oo a 330 Y23 C
= ,02<W3 8 (2 §
3
3
o~ ¢
uum\ou. - 3304 Y0346 o~
&= 0000T <LV (€ .
2
2
IRULLIIL -
&= 03UC (v %v s
L
1N
v

e ———— ——

Fiqure 7 1ds an SCL program for this example. The reader should

note the following points in this sanple proaram:

o The CONFIGURE statement specifies the STANDALONE mode
which allows a user to interface dirvectly with environment
model data via an EFS (Executive Functional Simulation)
block instead of using the real DAIS executive software.
It also specifies the SDVS simulator (the SLS) and the
files to be loaded (version 1 revision 0 of HAV).

o The EFS Contral Block (EFS-NAV-INPUT) defined the assian-
ment of environment mode sensor data (denoted by the
prefix E:) to variables in the program, NAV. These
assignment statements will be executed periodically at 32
times per second prior to executing the AV routine as de-
fined by the statement,

PERFORM EFS-NAV-INPUT EVERY ,03125 UNTIL 1000;.

o The INCLUDE statement allows the user to copy in other

test case files to be included as part of the test case.

o The ROT-SIM-DATA block defines model and mission software
position data that is to be recorded once a second as
defined by the statement,

PERFORM ROT-SIM-DATA EVERY 1 UNTIL 1000;.

o The CON-INIT block defines all the initial conditions at
ground zero. These assignments are executed by the
statement,

PERFORM CON-INIT;.

o The statements defining the mission profile correspond
to the flight profile illustrated in Figure 4-4,

23

T T T Qe e e

weubouq 795 SAQS @|duers / BunbLy

. i S A A e

| oN3 i

| #1235 7 WINEONL. IAAVICR ! {

PRELIY S A30 | !

[w130 X WLk | *

, » 1708 W ! !

£0001 MANN T AYIAI VIVO-KIS- | « 170¥ n
000t 11 AUIA3 VLIVO-RIS-10Y Wy0SY3d o114 43 AN ,
«ONO23S A¥3A3 VIVO 9NISS3I0Md LS04 1237110J.
S L2 K1939

LNNI-AVN-S43 X010

-HOLld dSIAYICA INTWALIS _
LILYNDINIL NINHL 0 => DO N3HM !
|

L4340 STIATY INVIA NIHM NOLLYINUIS IHL ILWNTIN3L. «3NILNGY AYN 3HL

OL ¥LYO T300W 40 LNIANIISSY 3WL SINIS30 2114 SIHL {
1560552°(5/2~ «DD INIWALIS NIHL 0000 < LV NIHN | vivg-Avk 310d. | {
440 13A31°*14 00001 LV. w
£0-D0 INTYALIS NIHL SBLSBZ LS/ 02 < VLIHL NIHA
LIONLILLY KOLT4 339930 02 MIVINIVM.
166562°£5/2+00 3NTVALIS NIML OLT < NN:3 MIN ,
0 wSd4 0L1 € ALID0T3A N3HA 4503NVL ! e T
31408 NOISSIN 3uL 3NI430 SLNIHILVLS ONINOTI04 IHL _ SN B33 T R |
501 0 PG 3 53 O Laspgm g oGt <
" nfA* ‘13114, *0=¥Y¥"0wdd" 0=l s =
¥ 3NLLNH AWK 3 TNITKI ONY ¥AVC BOSUIS VI Lhente s %@mﬁwmmwm. - ammummwwmwna“uwmm :
LIND-NOD HUOZYI4 ~L¥1 WILINI. "S6LL5627LS/SE= n.,%.wn#;:m ,,
L0¥3Z 3W1L LY SONVMO0D NOTLVZITWILIND 31MD3X3, Sy _

LINI=NOD 32078

*O/1/NLVA-AYN 30MINI LSONYRAOI MOTIVZITVILIND 13004 SNIVANGD 3713 SIwL

IYMLI0S T0HLN0 N IATLNIINT 1YY ML WLIN { BRSO e =
N1 3C ATIVMAON OTNON IVHL VYD LNdN] HOSH3S OWINI430
3704 ($43)101 L¥INIS-T¥NOILIMN4-3A1LNIIX3 30N1INI.
10/1/0¥32-040¥9 30MTINI
*0/1/N011231702-¥4VG 30NTONI
LYLYO MOTIVZITVILIND 300N INIINONTAND ONY
(304023Y 38 01 viv0 SUINII0 S3UJ IS¥D LSIL I0NTINI.
0/1/A¥N $7S INOIWONYLS JHNOL4U0D oN3 .
NOLLISOS LAVEIY 13000, LW ON0Y* L 5
LAYN 40 0 NOISIAY T 1OISH3A NOTLISOd JUYMLIOS MOISSIe *47¢°MOT*LIVI:AMMIM
DUIOVOY 3004 INOTVOWYLS 34 K1 KOILVINGIS 31iL 3¥n913103a N1938 f

| ViVOi1S-10¥ 3018
, +ONOJ3S AN3A3 031331700 38 0L ViVQ $2%1433 374 S!ul

| MIL31703 VIV 314. _ ¥

0HL0D NOLLVINKLES SAQS 40 3TuWvX3

f. Data Processina lLanguaage (N°L)

A SDVYS simulation aenerates a volume of data collected at
numerous points in a sirmulation. .lith the SCL, the user can snecify
both conditional and unconditional events that result in the output
data to a Rouah Output Tape. This tape contains all the simulator
trace outputs, a load map of the mission software for each DAIS nrocessor,
run time error and warnina messaces from the various sinulators, data
from the environment models and mission software defined by the user,
etc., as they occur in simulated time. Fiqure 7 illustrates the use
of a Rough Output Tane (ROT) block definina the variables to be recorded.
every second durino a simulation. From the vast volume of data, the user

must be able to sort out and display the information in a meaningful for

The SDVS Data Processing Language has been designed to nrovide the
SDVS user an easy to use flexible tool to select for analysis, printout
or plotting the specific parameter data he desires. In selecting data
to be output, the user does not have to worry about conversion of mission
software or environment model data from binary to the correct outnut format,
this is all handled automatically by SDVS. To determine the correct formats,
SDVS reads the symbol tables generated for mission sc©iiare and environment
model programs by the JOVIAL and FORTRAN comoilers, and extracts the necessary
information. This SDVS tool removes much of the drudgery sometimes

associated with data analysis. The DPL provides the following user oriented
functions:

o feneration and editing of data files containing user
defined variables from the ROT.

o A PRINT canability to output generated data files to
the printer.

o N DISPLAY capability to output information to the user's
interactive terminal.

n N statistical nackage to compute statistical information

of simulation data.

o

n

(1)

Automatic generation of plots based on collected simulation

data.

Execution of user supnlied analysis routines using a

simulation ROT.

DPL_Example

Fiqure 8 s a DPL program that can be used to nrocess data

collected in the SCL example shown in Figure 7.

This DPL program is used to print out the environmental model and

mission softuyare nav data. This data will be printed on the line printer,

and will be analyzed by a user routine, error analysis, to determine the

mission software error. This error is then plotted as a function of time.

The reader should note the followina noints from this sample

proqrarn:

0

e e e e b e e R e IR oo die e Sissi et e, ann RN

The CONFIGURE statement specifies the user routine to
he executed, and its lanquaqge (JOVIAL).

The GENERATE statement is used to create a data file,
HAV-DATA, which includes all the data on the ROT block,
ROT-SIN-DATA.

The FORMAT statement is used to define the format of
the data file (NAV-ACCURACY) which is computed by the

user's routine.

The PRINT statement will automatically print out all the
data contained in the data file, NAV-DATA. The output is
in a tabular format and is time taqgged.

The PLOT commands shown allow the user to specify the plot
title, the axis titles, and any desired data conversions.

The user could also specify the X and Y axis lengths, the

minimum and maximum X and Y values allowed, and any biases
to be added or subtracted from variables to be plotted.

26

AR e s e

DAPLE 0F SCYS POST RN PROCESSING

*THIS POST-QUN-E0IT FPROGRAN IS USED TD PRINT OUT THE®
SERVIROTEIENTAL PODEL AND SSTO0N SIETWANE NAV DATA FROM™
®A SINMULATION RUM, THIS CATA WILL 3E PXINTED 04 THE LINE®
“FRINTER, AND WILL BF ANALYZED BY A USER FOUTINE, CRKOR
"ANALYSIS, TQ CITEMUINT THE MISSIQH SOFT. EROCR. THIS"
“ERROR 1S Thete PLOTTED AS A FUNCTION OF TiME™

"SPECIFY THE USER ERROR-ANALYSIS POUTInE®
CONFIGURE USER-ROUTINE JCVIAL EPROR-ANALYSIS/1/0;

"GFRLRATE THD DATA FILE, NAV-DATA, CONTATNING™
“THE PARAVETERS IN ROT BLOCK, ROT-SII-DATA.®

GENERATE HNAV-DATA ROT-SIt-DATA;

SDEFINE THE DATA FILE CONTAINGNG TAE QUTPUT OF THI USER"
®"ROUTINE. THIS QUTPUT IS THE LAVIGATION ERROR rOR LATITUDE,"
“LONGITUDE, ATTITUUE, ~ND THE SINULATION TIMe, TIMg"

FORIMAT NAV-ACCURACY
BEGIN
FLOATING: LAT-EFR,
FLOATING: LON-EFR,
FLOATING: ALT-ERR,
FLOATING: TIME
END;

“PRINT OUT ALL THE KSW AND EES NAY DATA®
PRINT NAV-DATA;

“EXECUTE THE USER POUTINE, ERROR-ZNALYSIS, WHICH CONMPUTES®
“THE NAVIGATION ERROR"

"INPUT FILE: NAV-DATA®
"OUTPUT FILE: NAV-ACCURACY®

EXECUTE ERRGR-ANALISIS
NAV-DATA:KAV-ACCURACY §
“PLOT THE COMPUTED NAVIGATION ERROPS AS A FUNCTIOL OF TINME®

PLOT NAV-ACCURACY SI!-TINE, LAT-€RR(RAD-DEG)
TITLE="LATITUDE ERKOR VS Tilt'
XUASLE="TINE(SEC)"®
YLASLE="LATITUDL ERROR/DEG)';

PLOT NAV-ACCURACY SIM-TIME, LON-FR4(RAD-DEG)
TITLE'LONGITUDE €PROR VS, TIME'
XUARLE«"TInE(5EC)"
YLABLE="LONGITUD? ERRGR (DEG)';

PLOT NAV-ACCURACY SIM-TIME, ALT-EFR
TITLE="ALTITUNL ERROR VS, TIME'
XLACLE="TInE(SEC) !
YLABLE="ALTITUDE ERROR(FEET)';

Figure & Sample SDVS DPL Program

e ——— M

3. SDVS Simulation Facilities

Section 4, ¢. described the SDVS Set Un and Run Simulation Mode
in vhich a user specifies a test case file definina the desired simulation
scenario. Section 4, a. presented an introduction into the test case
Tanauaae used to describe simulation scenarios. The purnose of this section
is to present the SDVS simulation tools that simulate the DAIS hardwace
(nrocessors, data bus, remote terminals) shown in the riaht half of Fiqure
2 and nrovide analoaous "support" capabilities shown in the left half

of the same fiqure.

Fiqure 9 npresents the DAIS Inteqrated Test Bed Facility from a SDVS

simulation noint of view.

The left half of Fiqure 9 illustrates the SDVS support facilities for
mission software testing and validation functions. The heart of this
support facility is the Simulation Monitor and Control function. It can
be viewed bv the user as a "virtual machine" nerforming functions of the
Parformance Monitor and Control and Simulated Subsystems Data Formatter
comnuters of the DAIS supnort facility. The virtual SDVS machine is
actually much more powerful than the actual computers since there are no
harduare limitations, and all monitoring and control functions can occur

in zero simulation time.

‘ The right half of Fiqure 9 shows the SDVS simulators of the DAIS
.COWHOHQHCS. The only simulator not included in the current version of

; SDVS are for the DAIS Controls and Displays which may be added at a

future date. The SDVS code executors consist of both a Statement Level
Simulator (SLS) and an Interpretive Computer Simulator (ICS). The SLS
executes mission software generated by the 173 compiler for execution on
the host DECIN, while the ICS executes the actual DAIS processor code with
bit level accuracy. Since the SLS actually executes on the DEC10, the
throughput is very hiagh compared to the interpretive execution of the ICS.
These two tools provide the user a choice of fidelity in the simulation

of nission software code.

28

[‘ﬁ;‘ W - . W VRTINS R TSRS T T " -

e

SIvU 30 matp SAQ

S UL § QunbLg

ALINI2V4 1¥04dNS SAGS

|
|| v ¥oLnoax3

it 4 3000 |
| R T .|
0
1 0
_ i ,
| Sng
LhYQ u o
-Nng3y o | _
bed g
Sl¥ O |
sn12g o q —

—— 2 ¥01Nn33X3

YINALS | ‘ 3000 |
L}

LVINWIS ONY IN3WNOYIAN3

|

e mriutiem

Y¥3LLVWH04
ViV

SW3L1SASENs

|
|
|

“ L |twounoaxs | |

i 3002 ~

_—

| —

_ JOVVrme
| %2ov810y |
! _ /10HSAYNS

e 5 AP ANEACH e

ONY ¥OLINOW

T04.1NOD

(3JWIL NDY |

TOY¥LINGD

. |

) 01230

NOILVINWI

g30Y0T
‘ | JYDINIT

I _—

|
| {

 SESISSI—

INIQE0D3Y
vive |
{

| d31RdWCI w

ONISS3COY
| 140

SOI¥YNIZ3
Jo
>
S1300W
| [4WEOEIY !

€T30 WIS,
| -80S _2INOIAY

YW
VivYGQ

| NOILYVINWIS |

29

TO T T —"

A

a. SDVS Support Facility
e . —— v e e W -

The SDVS Support Facility consists of a numher of tools that SDVS

uses to implement the simulation scenario defined in the user's test case
file. The Simulation Monitor and control function interprets the user's
translated Simulation Control Languadge test case and performs the necessary
functions. The translated test case essentially consists of a number of
tables and instructions defining data to be collected, monitorina of
conditional events, user run time control of simulation events, execution

of the environment models, etc.

(1) Code Executor Linker/Loaders

Since SDVYS can simulate both DEC10 and DAIS processor code, it must
be able to link and load both types of object code. In addition to load-
ing object code the linker/loaders also process snecial tables generated
by the J73 mission software compiler for SDVS use. These tables include
the statement boundaries for each JOVIAL statement and a list of the
variables that can be set by each JOVIAL statement. The statement boundarv
information enahles SDVS to trace mission software execution at the JOVIAL
statement level. The list of variables set for each statement is used to
set up the monitorinag facilities for evaluating conditional events (e.a.,
Simulation Control Lanauaqe “HEN, WHENEVER, and WHILE statements).

(2) Snapshot/Rollback

The Simulation Control Lanquage includes a SNAPSHOT statement which,
when executed during the course of a simulation, results in saving the
state of the mission software, the code executors, the data bus model, and
the environment models. A snapshot can be performed based on a conditional
event (e.q., WHEN A > 50 OR B < 30 THEN PERFORM SHAPSHOT), or at periodic

intervals as defined in the Simulation Control Language.

The user can later initiate a rollback via the SDVS Rollhack mode
to any simulation snapshot point and restart the simulation from that
point. In restarting a simulation, the user can modify his test case
files to delete or add new conditions to be evaiuated, re-initialize
mission software and environment model data, and add or delete SCL control
blocks (subroutines).

30

e i i andiibnind - A T N R T T T Qe

The use of this tool can save many hours of DEC10 computer time
bv not having to start simulation runs from time zero to aet more de-
hugaina information, or to analyze performance by changing critical

variahles in the mission software or environment models.
(3) Data Recording

DVS can record a wealth of information to assist the user in
the debuagina or validation of mission software. The data that can be

recorded during a simulation includes the followina:

a) Code executor trace information (statement trace, transfer

trace, ICS reqgister trace, ICS instruction trace, etc.).

(b) Data bus simulation trace information (I/0 interrupts

generated, bus commands, bus traffic, etc.).

¢) Environment model trace information definina the time

each model was executed.

| (d) Values of variables selected to be traced by the user each

time they are updated.

(e) Simulation run time warnina or error messaqes detected by
SDVS.

(f) User defined mission software or environment model data as

requested by the user.

As described in section 4.2.2.1, the user can analyze data collected
hv a simulation by constructing a program in the SDYS Data Processing

Lanquaqe.

(4) Subsystems Data Formatting

. » Since SDVS uses the same environment models that will be used on
the actual facility, the Subsystems Data Formatting function is very
similar for both SDVS simulations and DAIS facility. The only difference

i is that for SDVS, this function interfaces with the simulation of the

remote terminals included as part of the data bus simulation. As the

31

PP o . i adling ail® B W T e T TR IR - 2

2 i . Sadiriiai it R

mission software executive initiates I/0 commands vhich address variables
computed by the environment models, this function will signal the Simula-
tion Monitor and Control function to pass data to, or receive data from

a model, and if necessary, execute the appropriate model at that instant
of simulation time. This technique of executing environment models on
demand insures accurate sensor data for the mission software.

T

2, Simulated Real-Time Clock and Run Time Control

These two functions provide the sequencing of sinulation events
which drive the Simulation Monitor and Control function. The simulated
clock alona with several event queues provide the ability to simulate in SNDVS
all the parallel operations that occur sinultaneouslv on the real DAIS
facility. The narallel operations include the operation of multiple

processors and multiple BCIUs.

Run time control includes the queuina of events for data recording,
execution of environment models, simulation of transmission delays over
the data bus, evaluation of conditional events, and performance of Simula-
tion Control Lanquaae "subroutines". This function provides control of a
Master Event Table which dispatches the events described above for execu-

tion.
f. SDVS Simulators

The SDVS simulators of the actual DAIS hardware provide.user tools
to debua and validate NAIS mission software in conjunction with, or to
the exclusion of, the actual DAIS hardware. The code executors and data
bus simulation each contain a small interface for communication with the
Simulation Control and Monitor function. This interface provides data to
the simulators to indicate simulation of error conditions (bad parity on
the bus, invalid bus pnrotocol, etc.) and receives data from the simulators
to be Togaed by the Data Recording function. This interface is well
defined and documented such that it would be possible to substitute a
di fferent 1CS for a new DAIS processor, or a different Data Bus sirnulation
for a different multinlex protocol. This ability to substitute SDVS
simulators is also possihle because the SDVS Support Facility shown in

W <

Fiaure 6, and the Simulation Control and Data Processing lanquages have
been designed to be as independent as possible from the simulators. This
capability to substitute simulators opens un a whole new world of potential
SPVS apnlications. As much as DAIS is to be used to evaluate and study new
avionic hardware and software concepts, SOVS could be used as an engineer-
ina facility to evaluate the DAIS concept with different nrocessor cap-
ahilities, data bus protocol, etc. Since the Simulation Contrnl Lanquace
test case proarams and Data Processing Lanquage post nrocessina nroqgrams
are independent of the simulators, a number of standardized nroarams in
these lanquaaes can bhe developed to evaluate different mixes of the DAIS

simulators and compare their relative performance.

(1) Interpretive Computer Simulator (ICS)

The ICS provides a bit level simulation of the DAIS nrocessor to
support the testinag and validation of mission software.. The ICS will
simulate the oneration of the DAIS processor at the instruction level,
such that the resultinag contents of registers and memory after execution
is the same as the results obtained on the actual nrocessor. The ICS
also simulates the input/output operations of the processor, the interrunt
svstem, all addressable registers in the CPU, and all the processor memory.

SDVS can simulate multiple I€Ss communicating over the data bus.

(2) Statement Level Simulator (SLS)

The SLS allows the mission software desiqgner to check out his equa-
tions and proaram desian without beina concerned with the details of
implementation on the DAIS nrocessor. The SLS executes DEC10 code and
will run many times faster than the ICS, thus allowing faster testing of

the software desian,

The SLS runs on the DECIN computer and executes JOVIAL source state-
ments in DEC10 code. The JOVIAL compiler provides the code to be executed
bv the SLS, alona with traps to indicate JOVIAL statement boundaries. The
SIS may be thouaht of as a code processor similar to the ICS, but at a

33

~

Ww——« e ~n—r—~';.—;} B i O e L R T R I s ———— oo - - - Py —— Sor e —— P

W - i e e

higher level. The ICS executes one instruction at a time, the 5LS
executes one JOVIAL source statement at a time. Multiple SLSs5 may

run concurrently in the SDVS.

(3) Data Bus Simulation

The SDVS Data Bus Simulation is a tool that functionally simulates
the DAIS multiplexed data bus architecture: It will simulate the command/
response characteristics of the data bus with respect to I/0 requests by
the SDVS code executors (ICS and SLS), and the transmission of data to/from
the various modeled sensors. The bus simulation will model the various
components of the data bus such that the interface presented to the ICS or

SLS is the same that would be presented to the actual DAIS processors.

The simulation was desianed to be independent of the DAIS executive
and 1/0 control software. This is done by interpretively simulating the
BCIU registers: the response of the simulation to requests from the code
executors is based on the state of the simulated registers. The bus
simulation also provides the Simulation Monitor and Control function
"event profiles" which define the time sequenced events commensurate with
a bus operation (e.q., master BCIU commanding a remote BCIU to receive
data). "Event profiles" are also constructed to simulate the events
associated with error conditions that can occur in the real world. Ths
user can specify the occurrence of simulated errors in SCL test case progran.

34

Y —— A g Rt

SECTION V

DESTGN AND IMPLEMENTATION TECHNIQUES

I Top-Down Approach

....... .

The purpose of this section' is to describe TRW's approach to the
development of the SDVS software and to comment on some of the techniques
empioyed. The pasic design philosophy was based on a top-down approach
to software design, development, and test. Top-down design, as applied to
the SDVS software development includes tne fcllowing techniques which are

discussed in detail in the following sections:

o Overall design of the program hierarchy and successive refinements
of this design from software requirements to specifications. A
basic design criteria was to develop the SDVS to be re-hosted

ori another large scale system with minimal modifications.

o Definition of all control and data interfaces according to the
hierarchy. Standard "Interface Diagrams" are used to convey

tnis information to all project members.

o Establishment of programming standards defining the tools and
rules to be used for software development. This includes use
of structured programming techniques and a high level language
which supports the structured programming conventions.

o Integration and testing according to a three phase delivery
schedule in which each phase provided enhanced SDVS capapilities.
Formal testing procedures were based on testing the functional
requirements reflected in the program hierarchy. Testing included
developing tests that followed the successive refinement process
involved in the basic design in addition to standalcone testing of

> various functions.

o Configuration control procedures for both the development and
testing of the software. During development, procedures were
used for controlling data shared among programs and utility
functions. During testing, strict configuration control of all

files was enforced and a formal problem reporting system was

employed.

e
—— g " e ™ X

As can be seen from the overview of the above techniques, the TRW anproach
to top-down design incorporated a number of new techniques in software
technology being advocated in the literature today. TRW's approach for
the SDVS software develobment was to integrate these new techniques into
an overall systems approach to develop a top-down strategy for the design

development, and testing of the SDVS.

The following paragraphs describe in more detail the top-down
techniques used in the SDVS development. Since many of these techniques
are relatively new and little data is available on the advantages and cis-
advantages of their application, an evaluation of their use for SDVS will

nresented.

36

be

a. Hierarchial Desian

The design of the SDVS was based on the program hierarchy shown in

Fiaure 5-1. FEach box shown, except for the grouping of DECI0 services,
{ represents a deliverable SDVS program. The following paraqraphs briefly
' describe the hierarchial oraanization shown. This section concludes with

some conslusions concerning exnerience gained during implementation of

the program nierarchv.
(1) Program Hierarchy
SDVS Control Program

This program interacts with the user in determining the desired mode
of operation and then transfers control to the appropriate second level
routine. A1l host processor functions are performed by this program (1/0
handlinq, calling the system compiler, etc.) based on conversational
commands input by the user from the File Generation mode and from second-

* level program requests. It will also submit simulation runs into the batch

svstem

This program will maintain, and provide controlled access to, all
SDVS files. It will provide the capability to store, retrieve, interrogate
and protect these files bv building and maintaining file catalogs containing
information about the files. Examples of such information are user file
name, internal file name, file type, program version number and revision

number, creation date, security lock, and author.

To effectivelv manipulate the File Management data base, this program
F performs three major orocessing tasks, as follows:

" ~ o File Retrieval - Whenever a file from the File Management data
base is required by one of the SDVS programs, the S"P will be
invoked to retrieve the file via the SDVS Control Program. It
will use the retrieval data uspplied to it to interrogate its

37

P) 2 e eI, A o e e e e e e —
O P P Y Vi b

Ol aunb4
94BM3 405 SAQS ;0 Aydurda Ly

~ A
{

|

sweaboud

(s%Q) £ |aAd]
$13 $31 s
12vi10x OIS
- o sweabouad
() (¢35) 23%) (2=$)
01103 1081803 ¥OLVEINID Wwiven 7 1ana]
NNY LS04 NOLAYINMIS 0levuns 1714
L J) L Jd |
v 0
2 (3¢}
$131Ae3S 01330 TN <L AT R S - WP B Wl = oty o, W) S iR i K 4
_ e
11) (ews)
' SIN1LNCE (o1 SINILACY LERPEL sb) _ " _
RS 1T s T W3l SNIONTINY 01 LY NG 1V gt bl ,
e GEIT0 Wbl e ¥3THI5SY ¥30v0) ¥0110) FURTBLE T i
pa s SIKI1NGH 0/1 01220 | : { il L) swedbodd
| SR DAET e e P R e B e e B] e e e e et v e A .
1 |8A9]
J

|

r\, w.rn,

Lo]

e inl3
§a0§

LEFRTH

MIxX

.

AV e e e

- Y St g P

e

file catalons and locate the internal name of the requested
file. This internal name will be passed to the SDVS CP,
which will use it to actually locate and retrieve the file

from secondary storage.

o File Disposition - When a new file is created by an SDVS
program or a user, it must be placed in the File Management
data base under control of the SMP. The program which
aenerates the file (e.qg., Scenario Generator, Simulation
Control, etc) will issue a file creation request. This
request will contain the qualified name under which the file
is to be controlled, the file type, and the name of the
person responsible for the file. The request will be passed
to the SMP where the data contained in the request will be
used to create a new cataloq entry for the file. The cataloged

file will then be written to secondary storage by the SDVS CP.

0o File Protection - The 'third major function of the SMP will be
to provide security locks on the files such that a given file
can only he accessed bv someone possessing the matching security
key. Each programmer will have security protection over his
files until his software has been completely tested and is
ready to become part of the official system. However, the
project manaaer will always heve access to all files in the data

base.
File Generator
This proaram processes file manipulation commands input by the user.

Section 4, (2) discusses these conversational commands.

The File Generator will not actually perform these functions itself
(e.q., COMPILE, EDIT, ACCESS, etc.), but rather will pass the user's requests
to the SDVYS Control Program which will in turn pass them to the DEC10
monitor and/or the Software Management Proqram.

39

e S - o Y ——————

e o b P aeadiidndaiit N Bl St B = e N —

Scenario Generator (SCG)

This proaram is divided into two proaram translators, a Simulation
Control Lanauaqe (SCL) translator and a Data Processina Lanquaae (DPL)
translator. The SCL defines the user's simulation scenario to be
executed; the DPL defines the data nrocessing to be performed on sinula-
tion data., The SCG is executed by a conversational command to translate
either a SCL or DPL file. The Scenario Generator will retrieve the de-
sired file from the SMP cataloas, translate the source code, and catalog

the translated test case in the SMP catalogs.

Simulation Control - Snapshot/Rollback

These programs are used to sequence a simulation scenario defined
bv a translated SCL proqgram. Thev will initialize the necessary simulators
(ICS: SLS, data bus, environment) for execution, load the users mission
software to be tested, perform rollbacks, and execute a simulation by

invokina the various simulators.

Sinulators (ICS, SLS, Data Bus, EES)

The programs simulate the DAIS hardware. Each of these programs
simulate appronriate events (e.q., execution of an instruction, a bus
transnission) unon direction of the Sirulation Control Program.

(2) Evaluation of Using Hierarchial Design

The top-down design process involved designing the programs at the
nighest level in the hierarchy first. Based on this design, the interfaces
to the next lower level of programs would be defined. These interfaces
would be used to drive the design of the next level of programs in the
hierarchy. This procedure would proceed down to the Towest level. Data
and control paths between program elements on the same level must pass
through a hiigher progran element which is common to both. No lateral
communications are alloved. One important aspect of ton-down design is that
interfaces are based uron the requirements of the higher level program and
that the Jower level programs are designed to fit these interfaces.

40

The SDVYS Control and Software Manaaement Proarams, though shown at
the top of the hierarchy, are actually a collection of utility routines
that are used by all the second level proagrams. The exception is the
SIWS Control Program function that interacts with the user and selects
the mode of oneration. The hierarchy diaaram, as drawn, renresents a
functional oraganization and not the exact control interfaces between the
various nrograms. To have implemented this structure in a strictly top-
down mariner where control and data interfaces reflect the hierarchy

diaqram would be impractical.

Based on this hierarchy diaaram, the control and data interfaces
between the SDVS programs first developed during the design of the SDVS
CP provided a qood first cut. Once the design of the second level programs
began these interfaces had to be modified to accommodate newly defined
functions. The interfaces had to again be modified when the third level
proarams were beina designed in detail. So, we found that desian of the
proaram hierarchy is an interactive process going in a top-down, bottom-
un cycle. Avoidance of this cycle is practically impossible. By spendina
the time to nmake the oriainal interfaces rore complete and more general,
however, the necessity for chanaes is reduced and much less modification
of code must be performed. Only after several top-down, bottom-up cycles
can a final "top-dovn" hierarchy diagram be drawn.

b. Rehostibility
One of the basic SNVS design qoals was that SDVS should be structured

to facilitate rehosting on another system. This was done by isolating all
host processor dependent software in the SPVS Control Program (e.q., 1/0
handlina, core control, text editor and compiler interfaces, etc.). The
Control Proaram would therefore be the only proaram requiring assembly
lanavage code; all other programs would be coded entirely in JOVIAL to
facilitate rehostina.

41

ﬁ' B e e N i o L I e T s - e — T —

This approach worked out extremely well., The only additional
program requiring assembly language code was in the SLS which involved
interfacing with the JOVIAL object code. The SDVS Control Program,
oringinally estimated to be coded 90% in assembly language, required
less than 10% of the coding to be in assenbly language. The following

naraqraphs address some of the major tasks of rehosting the SDVS.

Specified Tables were used throughout all SDVS programs. In fact
these tables represent a machine dependency since actual bit locations
within a word are referenced. In rehosting SDVS to a new computer many
of these tables would have to be changed. This would involve extensive,
but straightforvard modification of data declarations only. The actual

code which processes these tables would remain unchanged.
SDVYS Control Program

As previously mentioned, all machine dependent code was incorporated
into the design of this program. A major concern in rehosting will be
the investigation of available techniques for interacting with a new host
monitor/operating system. There are major Control Program techniques for
interfacing with the DEC10 monitor which are probably realized differently

on other processors. These include:

lIse of pseudo teletypes

Paainag swapping considerations

File directory operations

Account-code schemes

Tape Mounting Utilities

Interfacing with system processors (editors, compilers)
1/0 schemes

Special compiler and text editor interfaces

o 0o 9 0 0 o 8 o

Software Managerent Proaram (SHP)

The SNDVS SMP is implemented with the DEC Data Base Management System
(PDBMS) software developed in COBOL. Rehosting this program requires an
Information Management System package that would provide for the same

4?

i e il T —R . Ny T T T e o S

mv.a_

interfaces as DEC's DBMS. Questions that must be ansviered include:

o Is it a “standalone" system or callable from other
programs (e.a., SDVS)?

0o How similar are its cataloging facilities to those
of DBMS?

o How similar are its operators and calling sequences
to those of DBMS?

o Is it COBOL hosted?

43

C. Control and Data Interfaces

As mentioned above, the control interfaces in SDVS were completely
defined by the hierarchy structure. A program could be called only by a
program of a higher level and in turn it can only call programs of the next
Towar level. Programs of the same level have no direct interface. A
controlling nrogram of the next higher level must pass any necessary infor-
mation exchange between two programs of tne same level. After following
this approach completely at the start of SDVS, the need for a set of common
utility routines (I/0, parser, conversion, etc.) available to all progranms
soon became obvious. However this was the only major diversion from the

hierarchy defined control structure.

A1l DEC10 services (Action Processors) in SDVS are requested via Control
Points. A Control Point is a data area with enough fields to describe any
available service. For example, one field contains a code for the type of
service, another contains the address of a buffer area (used on I/0 reguests
only), etc. When a program requests a particular service, it fills only
those fields in the Control Point pertaining to that service. The use of
Control Points provides one data area for the passing of information. In
SDVS one Control Point was used for passing information to the action processor
and another for returning results to the calling program. Thus all data input
to the Action Processor remained intact even after the action had been
serviced. This has proved very beneficial in debugging the logic of programs
reguesting DEC1O0 services and in decreasing the complexity of data manipulation
in the Control Program itself. Insofar as meaningful names are assigned to
the various Control Point fields, they are very self-documenting and make it
very easy for a programmer to incorborate calls on new Action Processors.
Unfortunately, in SOVS, as the number of Action Processors expanded, several
Control Point fields took on duplicate unrelated meanings in calls on different
Action Processors. This ambiguity made the Control Points harder to use and
introduced greater possibility of errors.

Each SDVS Action Processor was described on an Interface Diagram which
listed the Control Point fields needed by the Action Processor on input and
described the meanings of each nossible completion code or output generated

24

o T T T T ™ N s A e ey,

e e e .

e S S

from the service request. These diagrams provided a clear description
of the interfaces required for a given service request and a central
definition point to facilitate updates and modifications of these

interfaces (see Fiqure 5-2 for an example).

In addition to Control Point interfaces most SDVS programs,
especially in the simulation system, need to share several data items
with their controllina program. These data interfaces were controlled
bv requirina all data common to two programs to reside in a separate
comnool. One copy of this compool was kept so that changes to the
interface were immediately reflected in both programs. Fiqure 12
shows the corpool interface between the SCP and EES proarams.

45

B e e R e SR PRI e e T e s T e ————

»!

*f31a0yIne 3 LumM | |N4 i

"UOLSJBA U0 BULILUM QN :2
*Aluo peau ‘aweu

9| Ly U0 DbuLILum QN H

pC A3 3In

3id0UINy-a3 LUM 2|
‘UDLSJBA p33sanbau
40 UOLSLABU 3SB] 3/
‘auRU Sy
40 J43QUNU UOLSJU3A 3SB]
*3ZLS 3|14
*404dd WaISAS dWS 86
*Sa|ly (ed0| Auew 00j :2g
40443 3L} 0230 :92
gstp-311pa 40j 3di3
143 ssadde 3,ue) :22
1 SLyl pead 03
Ajtaoyane JuaLdlLyynsul g
'0/1 LeL3uanbas
404 (eJ0| Apeas|e 3|l4 :p|
‘paialap
ALSNOLA34d UOLSJIA H
‘paja|ap
A|snotraud 3|ty :g
TUOL3RUUOJUL Y JULODyg
=1043U0) JuaLIL44nsul iy
UOLSUaIX3 30| umouxun :g
‘OWeU 3Ly umMouNun :§
“UOLSU3A cto:x.cD nv
43qunu
UOLSLA3J uMouyun :g

4
‘o

& w

(820] Apeaile a[id4 :2
*A314043ne 3 LuM
#0 |9A3] 404 2| P3}4
885 %0 p3ssadde 3|t4 0
-abuey 8poj uol3adwo) :f|

Pi3l4

‘uoLssas siy3 ut (burypid

-Wod 40 butAdod u4o0) buike|d
-SLp 40 bulzips auniny Jo04
a|qe|LeAR ‘uoLjeuado jo apow
SAQS SLU3 uL qol SAQS 3Fuddund
3U3 40 JUBWUOULAUD 3Yy3 ul

. le20[, 3lLts pabolejed e axey

(,3s930, Sueauw I-)
J3QWNU UOLSLARY :/
(,3s93°|, Sueauw 1-)
J3quNU UOLS4BA :9
3dA] :g
(9dA3-gns) uoLsuaix3 :p
dweu 3|ty :g

Plat4

AY1dS10-11G3
404 SS3V

I

w8u LNIOd TOYLNOD NI
03NYNL3Y 38 OL NOILYWYO4NI

1S3n034 Y. LNIOd 10YLNOD | WV INIOd TOMLINOD NI dJ SAGS

ONINSST ¥04 NOSV3Y

01 @317ddNS NOILVWYO4NI

NOILIV
INIOd T0¥1KNOD

SY0SS3J04d NOILIY INIOd T0¥LINOD dJ SAQS 03

SIIVHYIUINI

WOy 4

Access CP Interface

11

Figure

46

— ——

.-

Y sy g

¢ 103rai 00€p0 °BE

{ 1 (1299'20Z€1d0D°SNT 330 Xd0)i 006L0 °E

w Q33 ONY A0S Xg QAINIHIAAN AHY
HHTHW 9378y THy A AHL SNTwINND T0N4W0D SIHg
w 9L 01 NY D

w TIT ASVHA
w YAMY NOWWND S33 403

(L0 & X I 4

1S3340%. NIOHH 0000 °Z
{833d42S TNOGWND 006€0 °1

00REOD 1

00LEO °1

tNOTIdTINIS3N “ 0090 °*1
HCRAZs " 00S€0 °1
SNOTSHHEA " 00%€0 °1
$37LTL u 00€E€E0 °*0

TON/W/Y¥/7€3940S'WND*€33dIS=€37409¢33408

1 39Y4 WNI*E€334IS ¢ TNAOW RGSTT 9L/€2/fF 9(ZIIND*A 1TVIAOD

T

SCPEES Compool

Figure 12

47

-

—

TR

-

—

—

:ﬂﬂ.)f:
:rﬂlgﬂ:

._TNI\,A:
..DAlm.A:

WZlelw
=olﬁs

w®

st.-tttut-t-. nuuxun--ttosttto:t-ttvz an3
anNi
{n 1SR4 (14ax) ¥3AIONI waan1vde3dn ARLT
¢ W09TAH 4, 43740
+,QWT e RIHY T 1, NN ..Jﬂ&ﬂxm. 4,140 ¢, O8LY
iy)6
e,)2 T 4 1,a704% 4 ,549%4 4 aNAATY
RS C 1, a10duwe 1, wgAOSH NG E AR G040 1, q74dT
¢ MgQeD 1, wsNIS 1, nQANK, ¢, SnSdY ¢, 454040 M8 QasSh
Lty)Y +, Q1T o5 \
..L4Jda. 1,Q0Y, -_ﬁJ<2<Z. LB 0 AT A g
13534 (n*ny) 9 LHYHI 3ANwWs 3 FERA
NT1973A

t 2 ﬂon"—JL:zﬂwu CRELRS

" * asi
$1(020) ¥nnid A AQAR WILT
tro’s1 Y3ANT LR WwAll
¢ (0’01 Y3aNT 3ak1203x¢33 WaLT
NTO3H
1 ﬂrxnn»upngahznn»u 314avl
¢ wflw {y3¢33n anT 330
M chnuu wWwNH A nagn 234 N7T, nunt a0 Lunxjd “ H Ln)mA;A ﬁuaxcnuﬂ Lnru

WLaTav? 1a¥ead dh3 ¥30NTw ¢ 42393INT YAN1S33 “all

¢ gqnyi 1334 A¥21901 g 43631 w3ll
aRayl PLAKIALE: L RAME ayax =7
aytH1Aa 0o =0 200D NHNTAN. PLERAR 2qnDAS33 wat!
W AWTIT NOTIYINWTS (NAREND. ¢ 1¥o114 qw11s3d W3Ll
«8373 W A wi¥n =6
qaa n1 ¥YIva =%
A1anTH34 =1 34kl INAAT . ¢ 4393 1N1 1A3S313 walLl

..t..‘.'.‘.....‘....O‘..‘..“.“.‘...l.'.“‘.“"‘..‘.-“..‘.
N pWWOD g 31 AdSs

“.l.‘.‘...‘.........‘l‘...‘t.‘..‘..“.."..“.“.......““. "

7 A9Yd :3u.ﬂhg;ua"p4;:3> age1l YRAZZA

00180
00080
O LYAL
008L0O
ooLLO
009L0
00sLD
oovLO
0ngL0
007L0
0010
000L0
00690
0por90
00LQ0
00990
00690
0n®a0
00€90
00290
00190
0p0a0
006S0
00860
07LSs0
00LG0
00as0
00p6so0
0nyS0
0ngso
0nzso
00160
0n0g0
0n6v0
008%0
:orco
:JOGG
noSr 0
ankL0

o-ﬁﬂo.>

*ys
*ES
nNm
*1S
18
5]
*1s
*1S
*1s
RS
15
*1s
ok 4
*0Ss
*0S
*6b
o@‘
oﬁ'
*9v
*qv
uﬁﬁ
‘pb
-MQ
vNﬂ
*Zv
*19
o i
‘oY
QOM
OOM
.OM
omﬂ
‘Rt
*gt
‘gt
nwﬁ
owm
‘3t
-OM

ayi1AOC

) (continued)

(SCPEES Compoo]

Figure

a8

L .
s *

Rl sac

—

- |

[O= G

d. Software Development Standards

This section describes the SDVS software development standards for

developrient of the SDVS. The standards were predicated on the use of

structured programning techniques and a high order language that supbnorts
these techniques.

(1) Structured Programming

Structured programmina is based on the mathematically proven
Structure Theorem which states that any proper program (a proqram with
one entry and one exit) is equivalent to a proqram that contains as

loaic structures only:

0o sequences of two or more operations

o conditional branch to one of two operations and
return (IF a THEN b ELSE c)

o repetition of an operation while a condition is true
(DO WHILE)
Each of the three structures itse'f represents a proper progranm, Usina
combinations of these basic Structures, anv program can be built. Fven
thouagh any proaram can be built with these basic structures, it is desir-
able to include additional structures which provide more readable and sclf

documenting proorams, more efficient programming, and programmer conveniences

As a tool to aid in desianing the SDVS software using a set of program-
ming constructs, structured flowcharts were used. These flowcharts are
different than conventional flowcharts in that each programming structure
has a unique flowchart representation. The proarammer builds his proaram
by cormbinina the basic structures in constructina a program. The flowcharts
simplify the arrangerment of proaram logic to a process like that used in
enaineerina vhere loaic circuits are constructed from a hasic set of loaic

™y functions.

(a) SDVS_Structured Programming Constructs

The structured programming techniques emnloyed included the definition
of six basic structures (IF, WHILE, FOR, IF-THEN-ELSE, IF-ANY-1, and CASE)
and standards definina the J73/1 lanquane constructs to be used for each

structure. Two additional structures were added to accommodate situations

49

T T e o T T s L B S e eSS

e

vihere the six basic structures would be inefficient and would lead to
software that would contain unnecessary loagic and therefore be harder to
understand, verify, and maintain. These structures include an ESCAPE
construct allowina an error exit from a routine without having to use a
number of extra IF-THEN-ELSE constructs testina for the error conditions,
and an EXPANSION construct which provides the proarammer a strictly
controlled GO-TO capability to execute loaical functions without havina

to use subroutine calls.

Fiqure '3 illustrates the flow chart standards and JOVIAL J73/1

source code for each control structure.

(b) Evaluation of Structured Programming

lse of structured programming techniques proved to be an extremely
beneficial in the development of the SDVS software. By carefully defininq
the basic structures to be used in the context of the J73/1 lanquage,
structured prograrmming facilitated the on-schedule development, debugging,

testing, and delivery of a highly reliable system.

The use of structured flowcharts is a natural way to represent pro-
aram logic in a language independent notation. Originally SDVS was
developed in JOVIAL J70 prior to the availability of J73/I. During the
J70 development, the structured flowchart constructs were represented by
J70 syntax instead of J73 as shown in Fiqure 13. The conversion from J70
to J73 was therefore a "cookbook" operation, i.e., substitutina one set cof
syntactical statements for another. It would even be possible to write
FORTRAN statements corresponding to each basic structure, although the
structures are more suited to a JOVIAL like lanauage. In other words, the
flowcharts allow the programmer a way of representina the abstractions of

a problem independent of the lanauaae and comnuter to be implemented.

50

..-——.-...,\...— e ittt ot R A e e N — %

——

SWITCH i;
BEGIN
"ident 1" BEGIN
statement 1;

statement N;
GOTO ENDNAME;
ENDSW
"ident 2" BEGIN

statement 1;

s;otemenf N;
GOTO ENDNAME;
ENDSW

vident N" BEGIN

statement 1;

statement N;
GOTO ENDNAME;
ENDSW
END
ENDNAME: 5

ESCAPE ESCAPE

N

NAME EXPAND (NAME)

Figure 13 SDVS/J73 Control Structures

51

"SWITCH i"

"SWITCH i"

IFANYI

THEN IFEITH

it “THEN" BEGIN

statement 1;

a FISE 5;(1?(ment N,

END
ELSE BEGIN

statement 1;

statement N;

END
ENDIFEITH
condition 1 IFEITH condition 1;
P e BEGIN
statement 1;
condition 2 s;o?omcnf N;
END
ORIF condition 2;
BE GIN
statement 1;
condition 3 ¢
statement N;
END

ORIF NONE'OF ' THE' ABOVE;
BEGIN

condition N statement 1;

s;ofcment N;
END
ENDIFEITH

Note: In this example, the final ORIF condition used the define "NONE'OF'THE'

ABOVE".

This is to be used only if the final blocks of code is meant to

process any situation not handled above. If nothing is to be done, if all

conditions fail, the ORIF NONE'OF'THE'ABOVE block should be omitted.

T IR

Figure 13 SDVS/J73 Control Structures (Continued)
52
m oy o e M e A ——— ot

IF

condition

WHILE

condition

FOR

i, j, k,m

Figure 13

IF condition;
BEGIN

statement 1;

statement N;

END

WHILE condition;
BEGIN

statement 1;

statement N;

END

FOR i :j BY k WHILE
BEGIN

statement 1;

statement N;

END

where:

i is a variable name.

j, k, m are arithmetic expressions

53

Bl N e e R R Y e e - S—

LQ m;

SDVS/J73 Control Structures (Concluded)

. — e 3. e

<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>